Chapter 19: Retinopathy of Prematurity

Nina Menda, MD

- ROP is a multi-factorial condition of abnormal vascularization of developing retinal vessels occurring in premature infants due to incomplete vasculogenesis of the retina at the time of birth.
- Leads to retinal detachment and blindness if severe and untreated.

etinal Vasculature Embryology

- Retinal vasculature begins to develop at 14-15 weeks gestation
- Growth of the vessels begins centrally at the optic disc and grows out peripherally to the ora serrata
- Retinal vessels develop initially by the process of vasculogenesis and later angiogenesis
- 70% of retinal vasculature present at 27 weeks
- Reaches nasal ora serrata by 36 weeks and the temporal ora serrata by 39-41 weeks
- · Preterm birth leads to an avascular zone in the peripheral retina

pidemiology

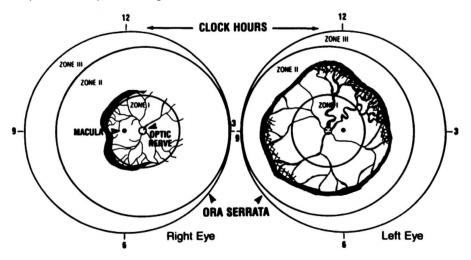
- Global health epidemic
- Leading cause of childhood blindness worldwide
- Overall prevalence is between 10-25% in premature infants, while incidence is about 50-70% in infants weighing < 1500 grams at the time of birth. [Incidence of 18-40% in premature infants in developed countries]

athogenesis of ROP

- Phase 1 (Vaso-obliteration)
 - Characterized by cessation of normal new retinal vessel growth
 - Occurs shortly after birth, following hyperoxia exposure
 - Hyperoxia downregulates vascular endoethelial growth factor (VEGF) secretion
- Phase 2 (Vaso-proliferation)
 - Characterized by retinal neovascularization, fibrosis and detachment
 - Fourtosixweeksafterbirth, the retina becomes hypoxic due to inadequate vasculature to nourish it
 - Hypoxia upregulates VEGF secretion, and excess VEGF leads to dysregulated angiogenesis
 - Vessels leave the retinal plane and grow into the vitreous leading to cicatrization, tugging of fibrous scars on the retina and eventual detachment

isk Factors

- Prematurity (ROP incidence is inversely proportional to gestational age at birth)
- Prolonged hyperoxia or supplemental oxygen use
- Low birth weight
- Post-natal growth restriction
- Inadequate post-natal nutrition
- Sepsis
- RDS/BPD
- Shock
- Asphyxia
- Hypothermia
- Acidosis
- Vitamin E deficiency


lassification

- Zone=Location of abnormal vascularization
- Clock Hour = Extent
- Stage = Severity

Stage	Features of Disease	
1	Demarcation line between the vascular and avascular portions of the retina	
2	Ridge-like structure between avascular and vascular retina	
3	Fragile new vessel proliferation from the ridge into the vitreous gel	
4A	Partial retinal detachment not involving the macula	
4B	Partial retinal detachment involving the macula	
5	Total retinal detachment	

- Plus Disease is defined as a significant retinal vein dilation and arterial tortuosity
- Pre-threshold disease is defined as stage 3 ROP in Zone II or any ROP in Zone I

xample of what ophthalmologists document in chart

ight Eye = Stage 2 Zone I/II, 6 clock hours without plus disease eft Eye = Stage 2/3 Zone II, 12 clock hours with plus disease in one quadrant

reatment

lost treatments for ROP are targeted for Phase 2 ROP

- A. Monitoring of pulse oximetry and judicious use of oxygen
 - Monitoring oxygenation using pulse oximetry has become the mainstay of ROP prevention.
 - Controversies surround target SpO₂ levels due to concerns of multi-centered randomized clinical trial (SUPPORT trial) showing increased mortality in low oxygen saturation target group (85-89%) compared to high (91-95%), despite reduction in severe ROP.
 - Oxygen saturation goals from birth to <37 weeks corrected age (90-94%), while infants >37 weeks corrected age (>95%)
- B. Serial Monitoring : Dilated retinal exams using a binocular indirect ophthalmoloscope by an ophthalmologist to determine retinal maturity and early detection of ROP to facilitate early treatment.

- C. Laser photocoagulation or cryosurgery
 - Current standard therapy for ROP
 - Ablates the avascular portion of the retina to reduce hypoxic stimulus from VEGF production, stopping abnormal vessel growth
 - Goal is to prevent retinaldetachment
 - · Patients will still lose some peripheral vision after treatment
 - Who should be treated?
 - Zone I any stage with Plus disease
 - Zone I Stage 3 without Plus disease
 - Zone II stage 2-3 with Plus disease
- D. Intravitreal bevacizumab (avastin) monotherapy has shown significant benefit for Zone I stage 3 disease in a RCT. Bevacizumab is a monoclonal antibody against VEGF. It is an intravitreal injection, used in premature infants with severe ROP and has shown significant promise in the treatment of ROP.
 - There is concern for systemic absorption of Avastin, which may result in pan-VEGF blockade which may interfere with angiogenesis in other developing organs. There is insufficient long term data on efficacy and safety.

rognosis

- Up to 80% of ROP will resolve spontaneously or regress
- Less than 6% require any treatment
- 3% or less will become blind from ROP

Screening Eye Exams

Nina Menda, MD

AP/Meriter Guidelines

- All infants with a birth weight ≤ 1500 grams, or gestational age at birth of ≤ 30 weeks
- Select infants with birth weight 1500-2000 grams or gestational age at birth of
- 30 weeks with an unstable clinical course and at higher risk for ROP as determined by attending neonatologist
- In most cases, ROP exams will begin at a PMA of 31 weeks or a chronological age of 4 weeks, whichever is longer.
- **As an exception, infants born at < 25 weeks gestation should be considered for earlier initiation of ROP screening at 6 weeks chronological age based on severity of comorbidities to identify and treat posterior ROP (severe form that is aggressive with rapid progression)

Gestational Age at Birth, Completed Weeks	Age at Initial Exam in Weeks	
	Postmenstrual	Chronological
22**	31 (28**)	9 (6**)
23**	31 (29**)	8 (6**)
24**	31 (30**)	7 (6**)
25	31	6
26	31	5
27	31	4
28	32	4
29	33	4
30	34	4
Older gestational age, high-risk factors		4

iming of Initial ROP Exam

Discontinuation of examinations

- PMA 45 weeks with no Pre-threshold disease
- Progression of vascularization in zone III without previous ROP in zone I or II
- Mild and regressing of ROP in zone III
- o Full retinal vascularization

eferences:

- 1. AAP Policy Statement. Screening Examination of Premature Infants for Retinopathy of Prematurity. *Pediatrics* 2013;131:189-195. doi: 10.1542/peds. 2012-2996.
- 2. Smith, L.E., Pathogenesis of retinopathy of prematurity. *Semin Neonatol*, 2003. 8(6): p. 469-73.
- Mezu-Ndubuisi, O.J., In Vivo Angiography Quantifies Oxygen-Induced Retinopathy Vascular Recovery. Optometry and Vision Science, 2016. 93(10): p. 1268.
- 4. Silva RA and. Moshfeghi DM. Interventions in Retinopathy of Prematurity. *Neoreviews* 2012;13;e476. DOI: 10.1542/neo.13-8-e476.
- 5. Phelps DL. Retinopathy of Prematurity. *Pediatrics in Review*. 1995; 16: 50-56.
- 6. Gilbert, C., Retinopathy of prematurity: A global perspective of the epidemics, population of babies at risk and implications for control. *Early Human Development*, 2008. 84: p. 77-82.
- Good, W.V., Final results of the Early Treatment for Retinopathy of Prematurity (ETROP) randomized trial. *Trans Am Ophthalmol Soc*, 2004. 102: p. 233-48; discussion 248-50.
- 8. SUPPORT Network, S.S.G.o.t.E.K.S.N.N.R., et al., Target ranges of oxygen saturation in extremely preterm infants. *N Engl J Med*, 2010. 362(21): p. 1959-69.
- Owen LA, Morrison MA, Hoffman RO, Yoder BA, DeAngelis MM. Retinopathy of prematurity: A comprehensive risk analysis for prevention and prediction of disease. Vavvas DG, ed. *PLoS ONE*. 2017;12(2):e0171467. doi:10.1371/journal.pone.0171467.
- **10.** Helen a. Mintz-Hittner, Kathleen Kennedy. Efficacy of Intravitreal Bevacizumab for stage 3+ retinopathy of prematurity. *NEJM* 2011; 364:603-15.