Chapter 9: Acid Base Balance

Ashleigh N. Rushing, MD and C. Lydia Wraight, MD

A. Blood Gases

- pH, pCO₂, pO₂ are measured directly
- HCO₃₋, O₂ saturation are calculated

Normal Blood Gas Values				
рН	7.35-7.45			
pCO ₂	35-45*			
HCO3	22-26			
Base Excess	-1 to -3			

* For infants ventilated > 7 days, permissive hypercapnea (pCO₂45-60) is accepted to decrease barotrauma.

• Acid-base balance is maintained with buffers

$$HCO_3^- + H^+$$
 H_2CO_3 $H_2O + CO_2$

B. Interpretation of blood gases

• Step 1: Is the pH acidic or basic?

pH < 7.35	Acidosis
pH > 7.45	Alkalosis

- Step 2: Is the disturbance respiratory or metabolic? Look at pCO₂.
 - Respiratory = pH and pCO₂ change in **opposite** directions
 - Metabolic = pH and pCO₂ change in the same direction

	Acidosis		Alkalosis	
	pН	pCO ₂	pН	pCO ₂
Respiratory	\downarrow	\uparrow	\uparrow	\downarrow
Metabolic	\downarrow	\downarrow	\uparrow	\uparrow

- Step 3: Is there compensation?
 - Compensation occurs to bring the pH closer to normal when the derangement is chronic, it will not correct the pH to normal.

	Ac	ute	Compensation	
	pCO ₂	HCO ₃	pCO ₂	HCO ₃
Respiratory Alkalosis	< 40	normal	< 40	low
Respiratory Acidosis	> 40	normal	> 40	high
Metabolic Alkalosis	normal	> 26	> 40	> 26
Metabolic Acidosis	normal	< 22	< 40	< 22

• Step4: Is there an anion gap?

Anion Gap =
$$[Na+] - ([Cl-] + [HCO_3])$$

Normal anion gap < 15 mEq/L

C. Respiratory Acidosis

- Most common cause of acidosis
- Poor ventilation results in CO₂ retention (CO₂ is high)

D. Respiratory Alkalosis

• Often iatrogenic, resulting from hyperventilation (ie we are giving the baby more support than they need)

E. Metabolic Acidosis

- Results from excess acid production or increased loss of base.
- Normal anion gap:
 - Renal: Immaturity, Renal Tubular Acidosis, Obstruction, Dysplasia
 - GI: Diarrhea, Short Gut

- Endo: Congenital Adrenal Hyperplasia
- High Protein Formula
- Administration of CI- containing compounds:
 - TPN, NH₄Cl, CaCl₂ especially in ELBW
- Compensation of respiratory alkalosis
- Increased anion gap:
 - Lactic acidosis: Shock with poor tissue perfusion and oxygenation
 - Acute renal failure
 - Inborn errors of metabolism: Organic acidemias, mitochondrial disorders, glycogen storage disease (type 1), galactosemia
 - Toxins
- Systemic effects of Metabolic Acidosis:
 - Pulmonary vasoconstriction (Pulmonary hypertension)
 - Decreased myocardial contractility
 - · Respiratory compensation: Increased work of breathing
 - CNS damage with severe acidosis

Management

- Treat the underlying cause when possible
- TPN associated mild acidosis may be treated with decreasing chloride and increasing acetate for a few days.
- Volume expansion if signs of hypovolemia
 - Excessive volume expansion is poorly tolerated in presence of decreased myocardial contractility
 - May use normal saline, packed RBCs or FFP as appropriate
- Pharmacologic options
 - NaHCO₃
 - Only use when infant has excellent ventilation
 - Risks of NaHCO, administration

- $\circ \quad {\sf Acute expansion of intravascular volume with risk of {\sf IVH}}$
- Shift of Hgb dissociation curve to left (\uparrow binding of O₂ to Hgb)
- Increased Na load and increased CO₂
- THAM an organic buffer
 - Can consider with severe acidosis with Na overload and high CO₂/poor ventilation
 - Associated with risk of apnea and hypoglycemia and is not as effective

F. Metabolic Alkalosis

- Commonly iatrogenic, resulting from diuretic use (ex: furosemide)
- Other etiologies:
 - Loss of gastric fluid: large gastric aspirates, emesis or diarrhea with Cl⁻loss
 - Compensation for chronic respiratory acidosis
 - Excessive administration of alkali (acetate in TPN)
- Management
 - Replace Cl- deficit, remove any acetate in TPN
 - Replace ongoing fluid and electrolyte losses
 - · Adjust ventilator if respiratory acidosis

eferences:

 Brodsky, D. and Martin, C. Acid Base Balance. Neonatology Review 3rd Ed. 2020.Vol 4: 34-3.